The role of the corpus callosum in dichotic listening: A combined morphometrical and diffusion-tensor MRI study

René Westerhausen\(^a\), Frank Kreuder\(^a\), Elisabeth Schweiger\(^a\), Kenneth Hugdahl\(^b\), & Werner Wittling\(^a\)

\(^a\) Center for Neuropsychological Research, University of Trier, Germany
\(^b\) Department of Biological and Medical Psychology, University of Bergen, Norway

Introduction

The commonly observed right-ear advantage (REA) in verbal dichotic listening (DL) can be modulated by instructing subjects to attend exclusively to one ear (forced attention) \([1, 2]\). Consequently, auditory laterality may be best understood as an interaction of two components: a bottom-up or stimulus-driven component, which favors processing of right-ear input, and a top-down component or process that allows for the attentional modulation of the laterality effect. Recent studies on patients with a severed Corpus callosum (CC) provide evidence that not only the bottom-up REA but also its top-down modulation are related to the functional integrity of the CC \([3]\).

Objectives

The following questions were addressed: (1) Is the auditory asymmetry related not only to macro- but also to microstructural variations of the CC, and (2) does attentional modulation affect this relationship?

Material and Methods

Participants

40 right-handed males (mean age: 23.7 ± 4.1 years); normal hearing (threshold <20 dB); interaural threshold difference <15 dB.

Bergen Dichotic Listening

108 pairs of consonant-vowel (CV) syllables (e.g., /ba-da/, /ga-ta/), presented via headphones in 3 blocks differing in attentional instruction (NF: non-forced; FL: forced-left attention; FR: forced-right attention); order was interindividually balanced: NF/FR/FL or NF/FL/FR; parameters obtained:

- left (L\%) and right ear scores (R\%)
- auditory laterality: ALS = (R\%/L\%)/(R\%/L\%)
- attentional gain: e.g., LEG = (FL\%L%-NF\%L%)/NF\%L%
- “non-attentional” reduction: e.g., LER = (NF\%L%-FR\%L%)/NF\%L%

Magnetic-Resonance Imaging

Anatomical imaging: T1-weighted SE (TE=14msec, TR = 500 msec); 9 sagittal slices (3mm, no gap); 256 x 256 matrix within a FOV of 256 x 256 mm²

Diffusion-tensor imaging (DTI) in 6 non-collinear directions (b = 600 sec/mm²); multishot EPI (TE = 98 msec, EPI factor: 17); 3 sagittal slices (4 mm, NSA = 16); matrix: 96 x 96; FOV: 128 x 128mm²; reconstr. 128 x 128 matrix; cardiac triggering and navigator echo motion correction; Postprocessing: voxelwise estimation of the diffusion tensor and calculation of the two quantitative parameters fractional anisotropy (FA) and mean diffusion (MD) from the eigenvalues of the tensor (see Figure 1; for an introduction to DTI see Ref. \([4]\)).

Measurements of the CC

Cross-sectional area, FA and MD for the total CC and its three subregions: genu, trunclus, and posterior third

Results

DL performance: As shown in Figure 2, a significant REA was found in the NF condition. Forced attention to the right ear further increases the REA while directing attention to the left results in a loss of the ear advantage.

DL and CC microstructure: In the NF condition, FA of the posterior callosal third was inversely related to L\% (r = -0.40, p < 0.001). With FL instruction, R\% was negatively related to MD (r = -0.36, p = 0.02) and RER was positively related to MD (r = 0.34, p = 0.02) in the posterior third.

Discussion

- **Substantial associations of CC with ALS:** R\%, and L\% in the NF condition indicate that a stronger interhemispheric connectivity allows increased left-ear and decreased right-ear performance, leading to a reduction in ALS.
- **In accordance with Kimura’s structural model of DL:** L\% was positively related to CC microstructural variability of the CC.
- **Recently studies on patients with a severed Corpus callosum (CC) provide evidence that not only the bottom-up REA but also its top-down modulation are related to the functional integrity of the CC** \([3]\).
- **Since DTI-derived measures offer indirect information about brain tissue properties:** the negative FA/L\% correlation in the posterior third indicates that NF performance is affected by microstructural variability of the CC.
- **Finding no correlation of any area or DTI measures with the REG under FR instruction seems to be only little direct involvement of the CC in this condition.**
- **Contrary, concerning the FL condition, R\% and REG were correlated to MD in the posterior third.** Thus, it seems likely that here microstructural variations are of particular importance, since under FL instruction the top-down modulation works against the built-in REA. However, under FR instruction a callosal involvement might be less important since both top-down and bottom-up component promote superior right-ear performance.

Conclusion

The results indicate a dual role of the CC: it not only subserves the bottom-up transfer of left-ear information to the left hemisphere, but it is also involved in the attentional modulation occurring in the FL condition. As recently proposed \([2]\), these functions may be supported by different callosal channels, one channel consisting of large-diameter axons responsible for rapid interhemispheric transfer of sensory information, and a second channel involving the small-diameter fibers that may mediate the allocation of attention to the left ear.

References

Presented at the 45th Annual Meeting of the Society for Psychophysiological Research (SPR), 2005, Lisbon, Portugal.

Correspondence to: westerhausen@uni-trier.de